Communication for maths

Term 2, Week 3: On describing the behaviour of functions

Introduction

Example

- Consider the curve below

From p87, "Mathematical Writing for undergraduate students",
Franco Vivaldi, Queen Mary, University of London

Introduction

Example: We might describe this as:

This is a smooth function, which is bounded and non-negative. It features an infinite sequence of evenly spaced local maxima, whose height decreases monotonically to zero. The function has a zero between any two consecutive maxima.

Ways of speaking

Consider the following graph of $y=m x+c$

Ways of speaking

- An arithmetic description of this line is
"y equals m times x plus c "
- A geometric description of this line is
"This is a straight line of gradient m, y-intercept c and x-intercept -c/m."

Ways of speaking

So

- Arithmetic description : a verbalisation of the symbols.
- Geometric description : a description of the mathematical meaning or effect of the transformation.

Ways of speaking

Examples

1) $f(x) \rightarrow a . f(x)$
" $f(x)$ gets transformed by doing a times $f(x)$." No
"Multiply $f(x)$ values by a "
No
"- - has the effect of stretching - - -"

Ways of speaking

Examples

1) $f(x) \rightarrow a . f(x)$
" $f(x)$ gets transformed by doing a times $f(x) . " \quad$ No
"Multiply $f(x)$ values by $a "$
No
"- - - has the effect of stretching - - in the y-direction"

Ways of speaking

Examples

2) $f(x) \rightarrow f(x)+a$
"Here we add a to $f(x) . "$
"This is a plus $f(x)$ "
No
"- - - has the effect of translating - - upwards" Yes
See your Ramesh/Rena's handout for more.

Ways of speaking

- We always want to speak about the behaviour of the function (conceptual description), not the mechanics of the function (arithmetic description)
- So we need appropriate terminology in order to do this (see next two slides).

Ways of speaking

- A selection of appropriate terminology. Use other terminology as necessary.

Stretch/squash	Interval	Reflect
Continuous/	Translate	Asymptotes
Discontinuous	up/down or left/right	(horizontal/vertical)
Curve	Bounded	Differentiable

Ways of speaking

- A selection of appropriate terminology. Use other terminology as necessary.

Function	Sequence	Maxima or minima
Monotonic	Roots/zeros; x or y intercepts	Step function
Concave/convex	First/second derivative	Smooth

Exercise (from F. Vivaldi; See moodle for reference)

- Describe the behaviour of the following functions.
4.7. DESCRIBING REAL SEQUENCES

Exercise 4.7. Describe the behaviour of the following functions.
1)

2)

Exercise (from F. Vivaldi; See moodle for reference)

- Describe the behaviour of the following functions.

Exercise (from F. Vivaldi; See moodle for reference)

- Describe the behaviour of the following functions.

10)

